

Mathematics Methods Units 3,4 Test 2 2018

Section 1 Calculator Free Applications of Calculus

STUDENT'S NAME

DATE: Thursday 5 April

TIME: 30 minutes

MARKS: 33

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (4 marks)

Determine the equation of the tangent to the curve $y \sin x = x$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.

2. (9 marks)

(a) Determine each of the following (do not simplify)

(i)
$$\frac{d}{dx} \frac{x^2}{e^{\sin 3x}}$$
 [3]

(ii)
$$\frac{d}{dx}e^{-x}(\sin 2x - \tan 2x)$$
 [3]

(b) Given
$$f(x) = \int_{x}^{1} (3-t)^{\frac{5}{2}} dt$$
 determine $f'(-1)$. [3]

3. (12 marks)

(a) Determine each of the following

(i)
$$\int \left(e^x + e^{-x}\right)^2 dx$$
 [3]

(ii)
$$\int 3e^{1-6x} + e \, dx$$
 [3]

(b) (i) determine
$$\frac{d}{dx}x\cos 2x$$
 [3]

(ii) use the result of (ii) to determine
$$\int 2x \sin 2x \, dx$$
 [3]

4. (8 marks)

The graph of y = f(x) is shown below. The size of the area of the two parts enclosed between the curve and the x-axis is shown on the graph.

Determine

(a)	$\int_0^3 f(x)dx$	[1]

(b)
$$\int_0^3 |f(x)| dx$$
 [1]

(c)
$$\int_{1}^{0} f(x) dx$$
 [2]

(d)
$$\int_{1}^{3} (2f(x)+3) dx$$
 [4]

Mathematics Methods Units 3,4 Test 2 2018

Section 2 Calculator Assumed Applications of Calculus

STUDENT'S NAME

DATE: Thursday 5 April

TIME: 20 minutes

MARKS: 22

INSTRUCTIONS:

Standard Items:Pens, pencils, drawing templates, eraserSpecial Items:Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

5. (6 marks)

Scientists are studying a population of endangered small mammals in a protected environment. They conclude the population is increasing at a rate of given by $B'(t) = 5.2e^{0.4t}$ where t is the number of weeks since the study began.

(a) What is the change in the population in the fourth week? [3]

(b) When the study began there were 500 of these mammals. The study will conclude when the population reaches 2000. When will this occur? [3]

6. (6 marks)

In the graph shown below, Q is the area enclosed by the graphs of y = x and $x = 6y - y^2$. P is the area bounded by the two graphs and the y-axis

Calculate

(a) the size of area Q

[3]

(b) the size of area P

[3]

7. (4 marks)

Two of the fission products of an explosion are found to decay according to the laws

$$\frac{dM_{1}}{dt} = -k_{1}M_{1} \qquad \text{where } e^{-k_{1}} = \frac{1}{4}$$
$$\frac{dM_{2}}{dt} = -k_{2}M_{2} \qquad \text{where } e^{-k_{2}} = \frac{1}{2}$$

If the initial ratio $\frac{M_1}{M_2} = 3$ what is the ratio after 6 days?

8. (6 marks)

A continuous function f(x) is increasing on the interval 0 < x < 3 and decreasing on the interval 3 < x < 6. Some of its values are given in the table below.

x	0	1	2	3	4	5	6
f(x)	5	16	27	32	25	0	- 49

The function F(X) is defined, for $0 \le x \le 6$, by $F(x) = \int_0^x f(t) dt$.

(a) At which value of x in the interval $0 \le x \le 6$ is F(x) greatest? Justify your answer. [2]

(b) At which value of x in the interval $0 \le x \le 6$ is F'(x) greatest? Justify your answer. [2]

(c) Use the values of f(x) in the table to show that $48 \le F(3) \le 75$. [2]